Note

An Example of a Nonpoised Interpolation Problem with a Constant Sign Determinant

In the work of S. Karlin and J. M. Karon [1] a perturbation technique is presented by which new collections of nonpoised interpolation problems can be generated out of known ones. The technique is based on the following theorem ([1], Theorem 2.1) proved there:
"Let F be an incidence matrix for an $H-B$ polynomial interpolation problem which is not order-poised and which changes sign in any neighborhood of some zero of the determinant $K(F)$. Let E be any incidence matrix from which F may be obtained by coalecsing some of the rows of E. Then E is not orderpoised, and the determinant $K(E)$ changes sign at least one of its zeroes."

The requirement that $K(F)$ changes sign in any neighborhood of one of its zeroes is essential to the method of proof, but it is not commented on in [1] whether or not this requirement is essential to the validity of the theorem.

In the following we present an example of a non-order poised incidence matrix F from which an order poised matrix E_{1} is obtained by perturbation. The determinant $K(F)$ is of constant sign near its zero, indicating that the above theorem is valid only in case there is a change of sign in a neighborhood of a zero of the determinant $K(F)$. Moreover, by different perturbations we can get from F a non-order poised matrix E_{3} such that $K\left(E_{3}\right)$ is of constant sign, as well as a non-order poised matrix E_{2} such that $K\left(E_{2}\right)$ changes sign in the neighborhood of its zero.

It should be mentioned that up to now no example of a non-order poised problem with a determinant of constant sign was known.

The matrices are:

$$
\begin{aligned}
& F=\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array} \quad E_{1}=\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array} \\
& E_{2}=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array} \quad E_{3}=\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}
\end{aligned}
$$

If we take $x_{2}=0$ it is easily seen that $K(F) \leqslant 0$ for all $x_{1}<0<x_{3}$ and $K(F)=0$ for $x_{3}=-x_{1}$. A similar calculation shows that $K\left(E_{1}\right) \neq 0$ for all $x_{1}<0<x_{3}<x_{4}$ and yet F can be obtained from E_{1} by coalecsing row 4 to row $3\left(x_{4} \rightarrow x_{3}{ }^{\dagger}\right)$. In order to verify the rest of the claims one can decompose E_{2} and E_{3} into irreducible matrices (see, for example [2]) and for the matrix E_{2} use Theorem 2.2 of [1].

References

1. S. Karlin and J. M. Karon, Poised and nonpoised Hermite-Birkhoff interpolation, Ind. Univ. Math. J. 21 (1972), 1131-1170.
2. K. Atkinson and A. Sharma, A partial characterization of poised Hermite-Birkhoff interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230-235.
E. Kimсhi
N. Richter-Dyn

Department of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

